

Table of Contents

1. Object Detection of Aerial Imagery
2. From Simulation to Synthesis
3. Beyond Optimization, Beyond Typologies

As a start

[

Masking streets

Subsampling

Delaunay Triangulation

Weighted nodes by the number of reachable trees

Path Optimization

angh: 19.02005080382

Aerial Imagery

Classification/Localization

Density Maps

Street Segmentation

Path Optimization
 user' question to harvest.

From Simulation to Synthesis
Modeling and Synthesizing Architectural Simulations

Zifeng Guo

Simulations in Architecture

The Church of Colònia Güell

Use a cable system to find the form for an arch system

https://ita.arch.ethz.ch/

Obstacles in Computer Simulation

Idealizations regarding the system

https://www.youtube.com/watch?v=Y-5ffl5_7AI

The rules of the system can neither be proved nor disproved

Rule-based Simulation in Design

Agent-based pedestrian simulation

Narahara, T. (2010). Self-organizing Computation A Framework for Generative Approaches to Architectural Design. Harvard University.

Rule-based Simulation in Design

Agent-based pedestrian simulation

(a) Walking Crowd Density

(b) Visiting Crowd Density

think
visit

Feng, T., Yu, L. F., Yeung, S. K., Yin, K., \& Zhou, K. (2016). Crowd-driven mid-scale layout design. ACM Trans. Graph., 35(4), 132-1

Obstacles in Computer Simulation

Numerical solution vs. analytical solution

$$
y^{\prime \prime}(t)=-g
$$

We observe that the rate of change of speed is a constant

$$
y^{\prime}(t)=-g t+a
$$

We then know how speed changes in time

$$
y(t)=-\frac{1}{2} g t^{2}+a t+b
$$

We then can calculate the precise positions in time

$$
y(t)=-\frac{1}{2} g t^{2}+v_{0} t+y_{0}
$$

Obstacles in Computer Simulation

Numerical solution vs. analytical solution

$$
\begin{gathered}
l(t)=L \theta(t) \\
l^{\prime \prime}(t)=L \theta^{\prime \prime}(t) \\
l^{\prime \prime}(t)=-g \sin (\theta(t)) \\
\theta^{\prime \prime}(t)=-\frac{g}{L} \sin (\theta(t))
\end{gathered}
$$

Numerical Integration

$$
\begin{gathered}
\theta^{\prime \prime}(t)=-\frac{g}{L} \sin (\theta(t)) \\
\theta^{\prime}(t+\Delta t)=\theta^{\prime}(t)+\Delta t \theta^{\prime \prime}(t) \\
\theta(t+\Delta t)=\theta(t)+\Delta t \theta^{\prime}(t)
\end{gathered}
$$

Numerical Integration

The Exact and Numerical solutions of $y^{\prime}=y$

$\Delta t=0.5$
$\Delta t=0.1$

$\Delta t=0.1,120$ frames

The Finite Element Method

Discretization of geometries

https://www.comsol.com/multiphysics/mesh-refinement

Dilemma

Exchange Capacity for Feasibility

Limitations

Huge consumption of computational resources of CPU (speed) and Memory (feasibility)

Too many idealizations for complex phenomena

Despite intensive effort on faster and more powerful simulator, these limitations and not effectively solved

Artificial Intelligence

The same dilemma existed in the history of artificial intelligence (Al)

Symbolic AI

"Good Old-Fashioned Artificial Intelligence"

Logic-based
Knowledge Representation
Combinatory
Theory-driven
"thinking (intellection) essentially is rational manipulation of mental symbols" (Haugeland, 1985)

Sub-symbolic AI

Probabilistic-based
Learning
Approximation
Data-driven
"representation is the wrong unit of abstraction in building the bulkiest parts of intelligent systems" (Brooks, 1991)

Artificial Intelligence

The same dilemma existed in the history of artificial intelligence (AI)

Symbolic AI
Sub-symbolic AI

The Deep Blue, 1997

The AlphaGo, 2016

Image to Image Translation

From any image to any image
edge2cats

semantic segmentation

https://towardsdatascience.com/semantic-segmentation-popular-architectures-dff0a75f39d0

From Simulation to Synthesis?

Any prediction as image to image translation?

Experiment: Topology Optimization

Zifeng Guo
Vahid Moosavi

Topology Optimization

"shape optimization in its most general setting should consist of a determination for every point in space whether there is material in that point or not"

Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural optimization, 1(4), 193-202

The Smart Slab

http://dbt.arch.ethz.ch/project/smart-slab/

Experiment: Cantilever

Truss Layout Optimization

Optimized

Synthesized

João Leitão
Nuno Simões
Vahid Moosavi

Flood Simulation

A Dynamic Process

Flood Simulation

Maximum Water Depth

Digital Elevation Model (DEM)

High

Low

Maximum Water Depth

One
Same Catchment Area with Different Rain Patterns

Areal Sampling
Can we prediction the in-between?

$$
Y
$$

Two

On Different Catchment Areas

The Prediction Results

Synthesized
Simulated

The Prediction Results

The Prediction Results

Improvement
4 Hours $\longrightarrow 3$ Seconds

Three
On Layout Design

Realtime Interactive Predictions

Beyond typologies, beyond optimization
 Exploring novel structural forms at the interface of Human and Machine Intelligence

- Introduction
- Proposed Technical Framework
- Design application
- User specific implementations
- Conclusion / Outlook
"Art is solving problems that cannot be formulated before they have been solved. The shaping of the question is part of the answer"

Piet Hein
1905
"[Structural] art is solving problems which cannot be formulated before they have been solved. The search goes on until a solution is found, which is deemed to be satisfactory. There are always many possible solutions, the search is for the best - but there is no best - just more or less good."

- Establish a theoretical framework that allows to generate multiple informed forms that go beyond the conventional canon of structural typologies.
- Create a human-centered design process to combine the subjective evaluation and selection capacity of humans with the capacity of machines handle large set of quantitative data.
 (Autodesk Revit, https://blogs.autodesk.com, 2016)

Evaluation

- Introduction
- Proposed Technical Framework
- Design application
- User specific implementations
- Conclusion I Outlook
b) Evaluation Quantitative

Higher-order Statistics (HOS)
d) Selection Qualitative Designer

human

machine
posible operations
c) Representation/Clustering

Self-organizing Map (SOM)
a) Generation - e) (Re-)Generation

Combinatorial Equilibrium modeling (CEM)
Gradient Boosted Trees (GBT)
b) Evaluation Quantitative

Higher-order Statistics (HOS)
d) Selection Qualitative Designer

human

machine
posible operations
c) Representation/Clustering

Self-organizing Map (SOM)
a) Generation - e) (Re-)Generation

Combinatorial Equilibrium modeling (CEM)
Gradient Boosted Trees (GBT)

Combinatorial Equilibrium Modelling

Combinatorial Equilibrium Modelling (CEM), is a method for the design of spatial networks in equilibrium that is based on graphic statics.

Objective Functions

In order to reduce the number of possible solutions, additional quantitative and qualitative aspects can be taken into account. Quantitative criteria addressed through filters and objective functions

Higher Order Statistics andSelf organizing Maps

This is an algorithm that learn to classify data without supervision.
It start with a initial distribution of random weights, and over many iterations, the SOM eventually settles into a map of stable zones all cluster

Formal characteristics

Based on the 2D grid SOM, the designer can no only get a fast and precise overview of possible solutions but also use this map to give feedback by distinguishing between preferred and non-preferred proposals.

Gradient boosting trees /CEM

In order to reduce the number of possible solutions, additional quantitative and qualitative aspects can be taken into account. Quantitative criteria addressed through filters and objective functions

Classifiers	Accuracy	Precision	Confusion Matrix
DecisionTree	0.7904335	$\begin{aligned} & 0 \text {-> } 0.777778 \\ & 1 \text {-> } 0.803089 \end{aligned}$	
Logistic Regression	0.879618	$\begin{aligned} & 0->0.890909 \\ & 1 \text {-> } 0.868327 \end{aligned}$	
Random Forest	0.89272	$\begin{aligned} & 0 \text {-> } 0.880137 \\ & 1 \text {-> } 0.905303 \end{aligned}$	
Gradient Boosted Trees	0.920364	$\begin{aligned} & 0->0.9140625 \\ & 1->0.9266666 \end{aligned}$	

- Introduction
- Proposed Technical Framework
- Design application
- User specific implementations
- Conclusion / Outlook

 $\{34.543,-18.7364,50.9361,30.0788,0.278136,39.8596,-20.1227,-60.9853,52.7318,33.3105,19.2516,49.5125,-15.7887,-$

 $\{34.543,-18.7364,50.9361,30.0788,0.278136,39.8596,-20.1227,-60.9853,52.7318,33.3105,19.2516,49.5125,-15.7887,-$

 $20.0416,64.5888,56.5408,-32.7644,-51.5964,58.0326,111.963,-53.1085,48.3359,46.597,-12.1734,46.9314,44.6823,0.341982,40.5199,-32.2993$,
 $7.10744,47.5695,57.9394,0.564492,49.8712,-47.9083,-71.145,4999115,61.1651,8.70232,47.4858,-15.8396,-1$
 $46.5387,73.3238,49.5036,-54.2419,-61.1703,46.0597,31.5283,-62.4652,34.1252,77.1038,-3.3824,46.8658,73.1327,0.900402,55.5542$,
$70.9194,45.0175,76.7339,550766,46.9103,-15.8621,-111.633,8.01029,30.8062,74.6256,256.6091,-66.8947,65.2312,37.8771,-79.0545$
 $75.6349,25.2103,91.8956,0.979688,42.9798,89.0233,1.33543,52.3066,-73.7821,-69.1793,33.4212,911.6789,1.66341,43.034$ 72.1502,67.2719,31.7616,-73.4105,-57.7509,25.1778,28.0059,-88.6887,16.8013,105.179,3.84306,34.7169,111.555,1.82207,35.6149,-82.1768,7.6965,19.9953, 104.987,-0.757382,34.7002,-15.9031,-111.996,7.84606,22.5545,99.556,7.69094,-68.9893,80.6991,17.157,-109.246,
$14.2972,14.6185,14.2972,14.2972,0.160643,14.2972,14.2972,14.6185,0.160643,14.2972,14.2972,14.2972,15.9036,16.2249,15.9036,15.9036,0$ 60643,15.9036,15.9036,15.9036,15.9036,16.2249,15.9036,15.9036,0.160643,15.9036,15.9036,16.2249,0.160643,15.9036,15.9036,15.9036, 0 036,28.0452,15.9036,15.9036,0.160643,15.9036,15.9036,14.257,0.160643,15.9036,15.9036,15.9036,22.4538,0,75.2358,41.2075,21.5317,63. 383,67.2346,0,16.6152,32, $7349,18.8196,43.3272,80.939,81.1032,54.4781,23.5145,61.4854,62.7705,8.83113,64.4443,9.073,66.379,612.4196,62.2138,72.9764,73.0646,61$ 2779,17.5199,62.34,63.6603,10.469,88.172,10.4361,72.4759,16.3133,255.6761,61.8827,61.69
-.29666,4.30533--4.51326--4.26326,2.21066--4.52769--4.68981,4.47898,2.19488,-4.7421-4.94194--4.49942,-6.11549,6.23002,-6.14343 .3471,4. $47799,-4.57848,-3.6277,4.98389,4.23898,-5.61091,-3.75125,-4.801,-8.21471,7.47645,-7.04706,-8.00241,6.10266,-7.38285,-$
 $9.47084,-3.04268,-11.4784,-13.4906,13.9196,-8.29807,-13.141,8.92617,-11.8069,-3.88311,4.52002,8.91988,-9.78249,-3.49855,--$ 1.9945,0.54,0.00006,-4.5,0.54,0.54,4.5,1.2.2,000006,-0.54,-4.5,0.54,-4.5,0.00006,1.2,1.2,-4.5,0.00006,-0.54,-0.54,0.00006,-0.54,1.2,-3.54,-3.54,-

a) Generation

$$
10000000
$$

$$
50505020
$$

-285.744
-285.429

$$
8
$$ ~28.588 -28.595 Cores Co rs

侖
 Corer

-278.538

[^0]"[Structural] art is solving problems which cannot be formulated before they have been solved. The search goes on until a solution is found, which is deemed to be satisfactory. There are always many possible solutions, the search is for the best - but there is no best - just more or less good."

Minimum Edge load path

edgeLoadPath $=$ lenghtElements $*$ force

Maximum cross section

crossSection $=0.5\left(\frac{\frac{\text { force }}{\text { maxStress }}}{\pi d}+d\right)<\max$

Maximum length of elements

Minimum slenderness ratio
inertia $=\pi\left(\frac{\left.\text { crossSection }^{4}-(\text { crossSection }-d)^{4}\right)}{4}\right)$
slendernessRatio $=\frac{\text { lenghtElements }}{\sqrt{\frac{\text { inertia }}{\text { crossSection }}}}>\min$

Higher Order statistics.

Original output:
Position of nodes
Length of edges
Magnitud of the forces
Load Path
Higher Order Statistics:
Mean of Length of Edges Mean of Position of Nodes Mean of Force Magnitude Mean of Load Path

Variance Length of Edges Variance of Position of Nodes Variance of Force Magnitude Variance of Load Path

Skewness Length of Edges
Skewness Position of Nodes Skewness of Force Magnitude Skewness of Load Path

Kurtosis Length of Edges Kurtosis of Position of Nodes Kurtosis of Force Magnitude Kurtosis of Load Path

Self Organizing Map

 \#0.150000025 0000050

Self Organizing Map

Group of representative forms for each cell

cell $\mathrm{N}=1$
forms in cell $=60$

Cluster by position of nodes
d) Qualitative Evaluation and Selection

Designer preferences

- Preferred

Non preferred

Input to label
Classifier
Random Inp

- Non preferred

40.,2.,90.,0.,0.,0.,-0.7,-1.,0.,0.,-1.,-1.,0.,0.,-1.,0.,0.,-1.,0.,0.,
,.,6,0.,.,1.2,2.,0.,.,.,2.,0.,
$2.9,2 ., 0 ., 0.9,2 ., 0.5 .3,1 ., 2 ., 40 ., 14 ., 800 ., 5\}.->1$
$\{30 ., 2 ., 90 ., 0 ., 1 ., 0 .,-1 .,-5 ., 1 ., 0 .,-6.6,-11 ., 1 ., 0 .,-6.6,1.0 .,-6.6,1 ., 0 .$,
.6,0.4,0.,0.,-7.,1.,0.,-2.6, 1.,0.,
$2.2,1 ., 0.1,8,1 ., 0 ., 1.9,0.3 ., 40 ., 40,500 ., 0\}.->0$
$\{30,2 ., 90 ., 0 ., 1 ., 0 .,-0.7,-7 ., 1,1,0 .,-3.6,-12 ., 1,1,0,-,-3.6,1,0 .,-3.6,1,, 0 .,-$ 3.6,0.4,0.,0.,-6.,1.,0.,-0.1,1.,0.,2.5,1.,0.,,.2,1.,0.,-
$0.9,0,3,40 ., 40 ., 500 ., 0\}.->0$
$\{30 ., 2,90 ., 0.1,1,0 .,-3 .,-10 ., 1,0 .,-4.8,-12 ., 1 ., 0 .,-4.8,1 ., 0 .,-4.8,1 ., 0 .,-$ $4.8,0.4,0 ., 0 .,-5 ., 1 ., 0 .,-1.3,1 ., 0 .,-1.7,1 ., 0 ., 2.3,1 ., 0 .,-$
$2.5,0.3 ., 40,40 ., 500 ., 0\}.->0$
$\{30 ., 2 ., 90 ., 0 ., 6.0 .0 .,-1.2,-2 ., 6 ., 0 .,-2.4,-3.6 ., 0 ., 2.4,6.0 .0 .$,
$2.4,6 ., 0 ., 2.4,0.4,0.0 .0 .,-$
$\rightarrow \quad 7 ., 6 ., 0 ., 1.2,2 ., 0 ., 0.2,2, .0 ., 1.6,2 ., 0 ., 1.7,0 ., 3 ., 40 ., 40 ., 500 ., 3\}.->0$
440.,2.,0,,,.,0,.,0.,-0.7,-1.,0.,0.,-1.,-1.,0.,0.,-1.,0.,0.,-1.,0.,0.,-
.,0.6,0.,0.,-1.2,2.,0..--3.2,2.,0.,,
$5.3,2 ., 0 ., 2.5,2 ., 0 ., 1 ., 1 ., 2 ., 40 ., 14 ., 800 ., 4\}.->1$
30.,2.,90.,0.,1.,0.,-4.,-10.,1.,0.,-1.8,-6.,1.,..,-1.8,1.,0.,-1.8,1.,0.,-
$1.8,0.4,0 ., 0 .,-7 ., 1 ., 0 .,-2.9,1 ., 0 .,-0.1,1 ., 0 ., 2.7,1 ., 0 .,-$
1.7,0.,3.,40., 40.,500.,0.\} -> 0
30.,2.,90.,0.,2.,0.,-4.2,-7.,2.,0.,-1.1,-11.,2.,0.,-1.1,2.,0.,-1.1,2.,0.,-
1.1,0.4,0.,.,.,-7.,2., $0 .,-0.2,2 ., 0 ., 0.3,2 ., 0 .,-$
$0.2,2 ., 0 ., 1.1,0 ., 3.40 ., 40 ., 500 ., 0\}.->0$
$30 ., 2 ., 90 ., 0,1 ., 0 .,-1.6,-8 ., 1 ., 0 .,-6 .,-10 ., 1,0 .,-6 ., 1 ., 0 .,-6 ., 1 ., 0 .,-$
.,0.4,0.,0.,-10.,1.,0.,2.5,1,.,.,1.2,1.,0.,-2.4,1.,0.,-
$4.8,0,3 ., 40 ., 40 ., 500 ., 0\}.->0$
30.,2.,0.,0.,6.,0.,-2.4,--6.,6.,0.,-1.1,-11.,6.,0.,-1.1,6.,0.,-1.1,6., 0.,-1.1,0.4,3.,0.,-4.,6.,0.,-0.6,6.,,.,-1.5,6.,0.,-1.6,6.,0.,-
0.6,2,3,40, $40,500,1\},->0$

Gradient boosting trees

learning curve

First Training a machine learning algorithm
$\{31.7004,1.95258,75.4383,0,5,0,1.7606$ 8.53543,-2.22924,0,0,-5.15774,4,0,$8.06515,4,0,0.956659,0.447817,2,0,0.6$
$11.0796,6,0-2.74024,4,1,2.27955,1,1,-$ $11.0796,6,0,-2.74024,4,1,2.27955,1,1,-$ $5.99889,2,1,37.3191,33.155,521,3\}$
$\{37.7186,1.95511,65.1791,0,0,0,-0.4093$ $6.48681,-3.70395,6,0,-4.64075,6,0,-8.2$ $6.48681,-3.70395,6,0,-4.64075,6,0,-8.2$
$9.67388,0.432731,1,0,-0.946617,0,0,-7$ $2.74343,4,1,2.30956,2,1,3.41206,2,2,32$
$\{34.1612,1.94711,16.5273,0,4,0,5.7606$ $4.92791,-2.37722,0,0,-3.09339,4,0,-9.9$.91664,4,0-4, 79404,4,1-0.8238,2,1,2
$\{36.2507,1.95232,45.2289,0,0,0,-0.7808$ 4.27408,-9.89226,0,0,2.25393,2,0,-3.78 $9.98175,0.595623,1,0,-2.92354,4,0,-$ $7.40239,6,0,1.12848,0,1,-3.06993,0,1$, 5.09253,1,0,38.6744,17.055,789,2\}
$\{38.6181,1.99975,69.9351,0,3,0,-1.031$ 7.26265,-4.94582,6,0,-5.41421,2,0,$5.44706,5,0,0.183436,0.427209,1,0$ $0.430016,2,1,1.78398,4,0$,
$0.128091,4,0,0.150396,6,1,2.41255,0,0$,4\}
[31.8534,1.93862,64.6778,0,5,0,2.5962 2.69748,-10.1341,4,0,-3.9415,0,0, $49635,1,0,2.5443,0.496435,1,0,-2.403$ $10.2459,5,1,0.868431,2,1,-$
$2.11791,2,1,5.51321,0,2,21.7704,37.15$
$\{38.0062,1.97964,24,2896,0,0,0,0.7385$ 2.33477,-7.32023,4,0,-1.6671,2,0,9.07272,0,0,3.19792,0.586746,3,0,0.39 6.77132,1,0,1.28317,3,1,
1.8156,4,0,3.41661,3,1,28.105,33.0263
\{39.8521,1.99013,16,7108,0,2,0,7 8373 $\{39.8521,1.99013,16.7108,0,2,0,7.8373$ $2.22954,-6.6361,0,0,-3.66743,0,0,-3.60$
$2.0674,0.474582,0,0,-2.56787,1,0,-3.40$ $3.02895,3,0,2.82892,5,0,2.71254,0,0,37$

$21.0262,2,0,-$
$9338,0,0,-$
$305,-10.0768,5,0,-$
$6361,2,0,-$
$8371,0,1,-$
$5624,33,5049,55$

$.5624,33.5049,552,3\}$ $1,-9.84755,4,0,-$ 877,3,0,-$1304,2,0,-$
$.1195,18.2262,629,2\}$ 396,4.81845,4,0,$443,5,0$,

```
6,-11.1122,0,0,
```

$2,0.289754,6,0,-$
5001,4,0,-
$540,2\}$
4.61936,1,0,-

$347,3,0,-$
$803,5,0$,

$803,5,0,-$
$.466,29.865,576,2\}$

Trained Classifier

Based on users preferences

confusion matrix

Classified data

\{32.709,1.92236,20.7891,0,0,0,4.1737,13.1791,2,0,-$4.60392,-3.25911,3,0,-3.53896,6,0,-$.43506,1,0,0.994046,0.431442,0,0,-1.08748,4,1,--
$4.274,4,0,0.846389,1,1,-1.32083,4,0,-$ $3.25967,3,0,20.5569,14.3004,665,4\}>1$ (99.9243%)
$\{31.6033,1.99855,36.7378,0,4,0,-0.604303,-10.0509,2,0$, 4.18794,-6.64236,1,0,2.88324,4,0,-7.49975,1,0,-$6.0594,0.424513,0,0,6.55737,4,1,-$ $1.71971,2,0,31.5574,39.7436,768,0\} \rightarrow 0(99.9266 \%)$
$\{33.8839,1.92742,71.1421,0,6,0,2.295,9.19651,4,0$, , 10.5094,-10.5067,1,0,-10.5287,3,0,-3.01153,1,0,-5.20941,0.51292,2,0,6.49537,5,1,-6.27142,0,1,-2.25551,1,1,-$0.796136,0,1,1.0436,1,1,35.1928,23.499,599,2\}-1$ (99.9448\%)
31.7973,1.93468,10.1377,0,6,0,-5.81181,38.933,4,0, $0.5629,-1.63411,1,0,-0.388363,0,0,-6.56066,1,0,-$
$3.32825,0.442369,2,0,6.69548,5,0,-5.69921,1,0,5.5168,0,0$,
$2.68969,4,0,0.431611,2,1,24.1778,32.562,578,1\} \rightarrow 0$ (99.9448\%)
\{30.3566,1.93511,30.1212,0,6,0,0.907838,14.4282,2,0,, 6.04254,-4.04241,2,0,-7.91578,1,0,-6.14707,4,0,-
$0.10778,0.469205,1,0,0.402954,3,0$,
1.16862,2,1,0.663736,4,1,2.92581,6,0,
.08582,0,2,24.5691,26.1762,585,1\} $\rightarrow 1$ (0.99994\%)
\{30.5361,1.96557,29.8152,0,2,0,-2.73107,-4.6429,4,0,-.03933,-4.35336,6,0,3.38563,2,.,-9.14164,5,0,-$7.64957,0.59164,1,0,-5.07847,6,1,-5.86651,1,0,-$. $564151,6,0,-$
.564151,6,0,-
$5.87093,0,0,1.98507,2,3,31.8755,25.0096,569,1\}->0$ (99.996\%)
35.3154, 1.99217,20.7123,0,6,0,3.39089,-8.5296, 1,0 6.89611,-6.19843,0,0,-8.62052,0,0,-10.0493,1,0,-5.34887,0.568105,2,0,-3.07016,4,1,-5.2056,0,0,-.96831,0,0,-3.25082,6,1,
$1.09355,2,1,25.7826,25.9543,790,3\}->1$ (99.9266%)
$\{33.011,1.98111,17.6824,0,2,0,4.3446,27.4604,4,0,-$ 1.18025,-11.2675,1,0,-4.15671,1,0,-7.18707,6,0,-$1.18025,-11.2675,1,0,-4.1567,1,0,-7$.
$2.7598,0.433088,2,0,-4.6134,6,1,-$
$0.722242,6,0,3.21735,2,1,2.6081,0,0$,
$4.12382,0,2,21.0503,15.1917,568,6\}->1(99.9867 \%)$

SOM 7×7

Group of representative forms for each cell
$\operatorname{cell} \mathrm{N}=1 \quad$ forms in cell $=33$

SOM 7×7

- Introduction
- Proposed Technical Framework
- Design application
- User specific implementations
- Conclusion / Outlook

Generation CEM

| trail | deviation
 lengths | forces |
| :---: | :---: | :---: | | origin |
| :---: |
| nodes |

Evaluation / Filter

Clustering SOM / Vectors

nodes
lengths edges
force
loadpath HOS nodes HOS length edges HOS force HOS loadpath

Generation CEM

teil
tenghs
len

Evaluation / Filter
$\underset{\substack{\text { min } \\ \text { load ath } \\ \square}}{\substack{\text { min } \\ \text { leng } \\ \text { min }}}$
Representation \& Clustering SOM
nodes lenght edges force loadpath HOS nodes HOS length edges HOS force HOS loadpath

Evaluation / Filter

Re-Generation GBT - CEM
$\underset{\substack{\text { trail } \\ \text { lengths }}}{\substack{\text { deviation } \\ \text { forces }}}$
Representation \& Clustering SOM

Designer 2

Generation CEM

Evaluation / Filter

Representation \& Clustering SOM

Evaluation / Filter

Re-Generation GBT - CEM

Representation \& Clustering SOM
nodes lenghs edges force loadpath HOS nodes HOS Iength edges HoS toce HOS losdanth

Generation CEM
$\underset{\substack{\text { tual } \\ \text { tength }}}{\substack{\text { devition } \\ \text { forcoses }}}$
Evaluation / Filter

Representation \& Clustering SOM

nodes lenghs edges force loorpath HOS nodes HOS length edges HOS focce HOS loodpath

S

Generation CEM
amice
Evaluation / Filter

Representation \& Clustering SOM

Evaluation / Filter

Re-Generation GBT - CEM

Representation \& Clustering SOM

Selection

- Introduction
- Proposed Technical Framework
- Design application
- User specific implementations
- Discussion / Outlook
b) Evaluation Quantitative
local stability
d) Selection Qualitative

human
machine
posible operations
c) Representation/Clustering

Self-organizing Map (SOM)
Higher-order Statistics (HOS)
a) Generation - e) (Re-)Generation

Combinatorial Equilibrium modeling (CEM)
Gradient Boosted Trees (GBT)

0000000000 0000000000 0000000000 0000000000 0000000000
b) Evaluation Quantitative
local stability
d) Selection Qualitative

human
machine
posible operations
c) Representation/Clustering

Self-organizing Map (SOM)
Higher-order Statistics (HOS)
a)Generation - e) (Re-)Generation

Combinatorial Equilibrium modeling (CEM)
Gradient Boosted Trees (GBT)
"Architecture is the art of jointing things together"
Vitruvius

The knowledge of the architect is furnished with many disciplines and various kinds of learning. Judiciously exercised, it demonstrates everything the other arts achieve. It is brought into being by fabrica and ratiocinatio. Fabrica is the continuous and routine practice of the activity the hands accomplish out of matter; its off spring is a work whose form is in keeping with its intended purpose. Ratiocinatio is what can show how, and explain to what degree, things have been made with skill and calculation.

Thanks

[^0]: Load Path

