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Abstract—The RSA algorithm is the most widely used public-
key cryptosystem today, but difficult to implement on embedded
devices due to the computation-intense nature of its underlying
arithmetic operations. Different techniques for efficient software
implementation of the RSA algorithm have been proposed; these
range from high-level approaches, such as exploiting the Chinese
Remainder Theorem (CRT), down to smart optimizations of the
low-level modular arithmetic (e.g. hybrid multiplication). In the
present paper we introduce a new variant of the hybrid method
for multiple-precision multiplication that optimizes both memory
accesses and register allocation. The inner loop of our improved
hybrid method saves about 7.8% in execution time compared to
the original one of Gura et al. We combine our hybrid method
with the Separated Operand Scanning (SOS) Montgomery mul-
tiplication into the HSOS method, a new technique to perform
long-integer modular arithmetic. Our practical results, obtained
on an ATmega128 microcontroller, show that the HSOS method
outperforms other modular multiplication techniques for typical
operand lengths used in RSA. A 1024-bit private-key operation
can be carried out in less than 76 . 106 clock cycles when taking
advantage of the CRT and m-ary exponentiation method, which
represents a new speed record for RSA on 8-bit controllers. We
also protected our RSA implementation against power analysis
attacks via the integration of low-cost countermeasures. These
countermeasures increased the execution time of the private-key
operation by just 12% compared to an unprotected version.

Index Terms—Lightweight implementation, multiple-precision
arithmetic, AVR architecture, side-channel cryptanalysis, coun-
termeasures against side-channel attacks.

I. INTRODUCTION

The Rivest-Shamir-Adleman (RSA) algorithm, developed in
the 1970s [21], is the foundation of the most important public-
key cryptosystem in use today. Both public-key encryption and
digital signature schemes can be constructed on basis of the
RSA algorithm. The security of the RSA cryptosystem relies
on the (presumed) intractability of the Integer Factorization
Problem (IFP). At present, in order to achieve a proper level
of security, the modulus N of an RSA cryptosystem should
have a size of at least 1024 bits. The costly part of RSA (and
other public-key schemes) is modular exponentiation, i.e. an
operation of the form C = ME mod N, whereby in our case
the operands have a length of 1024 bits. An exponentiation
of integers of such size can be easily done on commodity PCs
and laptops, but may result in unacceptably long delays on
smart cards, sensor nodes, and other embedded devices with

modest processing power. Elliptic Curve Cryptography (ECC)
[3] is generally seen as a viable alternative to RSA due to its
relatively small key sizes (e.g. 160 bits vs. 1024 bits) and the
resulting savings in execution time and memory footprint, all
of which are relevant in the embedded domain.

Despite the ongoing proliferation of ECC, RSA is still the
most important (and most widely used) public-key algorithm
in the world. In particular, RSA is an integral part of modern
security protocols such as SSL/TLS, WTLS, and IKE. On the
other hand, ECC has found adoption in security architectures
for ad-hoc and sensor networks [16]. However, the Internet is
dominated by RSA-based certificates and the corresponding
Public-Key Infrastructure (PKI). VeriSign, a big international
Certification Authority (CA), prefers RSA-based certificates
over their ECC counterparts for SSL, even when the clients
are resource-constrained devices like PDAs or mobile phones
[24]. The main reason is the fact that secure SSL connections
for Web applications (e.g. e-banking) are usually established
such that the server is authenticated to the client, but not vice
versa. Client authentication is typically done at the application
layer (and not the SSL layer), e.g. by a user entering his ID
and a password. Negotiating an RSA-based SSL connection
with server-only authentication is relatively inexpensive on the
client side since all RSA operations are executed with public
exponents, which are generally small. However, this picture
ceases to be valid for the “Internet of Things,” in which the
clients are objects such as sensor nodes or RFID tags instead
of conventional computing platforms controlled by a user. In
this setting, client authentication can not be done by entering
a password, but must be performed via private-key operations
involving full-size (i.e. 1024-bit) exponents. Therefore, effi-
cient RSA implementations for embedded devices play a vital
role in the expansion of well-established security protocols to
the Internet of Things.

There exists a considerable literature on efficient software
implementation of the RSA algorithm [11]. Quisquater and
Couvreur [20] were the first to demonstrate that the Chinese
Remainder Theorem (CRT) can be utilized to accelerate the
private-key operations of RSA by a factor of nearly four. The
efficiency of different exponentiation algorithms (e.g. square
and multiply method, m-ary technique, window method) was
studied in [10], [11]. Montgomery [19] proposed an ingenious



technique for modular reduction that avoids the trial division
and performs simple shift operations instead. Several variants
of Montgomery multiplication [19], including the “Finely In-
tegrated Product Scanning” (FIPS) method, were analyzed in
[12]. The Karatsuba-Comba-Montgomery (KCM) method [6]
is another variant that combines Karatsuba and Comba-style
multiplication techniques with Montgomery reduction. Gura
et al [7] introduced the hybrid strategy for multiple-precision
multiplication, which reduces the number of memory accesses
(i.e. loads) on processors with a large register file.

In the present paper, we describe our efforts to develop a
high-speed RSA software implementation for the AVR family
of microcontrollers [1], in particular the ATmega128 [2]. The
AVR is one of the most widely used 8-bit RISC architectures
and microcontrollers implementing this instruction set can be
found in various smart cards and sensor nodes. Our work is
motivated by the fact that there exist very few publications on
RSA implementations for 8-bit controllers, whereas numerous
papers have been written about efficient ECC software for the
ATmega128 (see e.g. [15], [16] and the references therein). In
addition, we were interested to determine which performance
well-written RSA software can achieve on an “8-bitter.” The
RSA implementation we introduce in this paper requires less
than 76 ·106 clock cycles to execute a full 1024-bit private-key
operation on an ATmega128, which sets a new speed record
for RSA on 8-bit microcontrollers. Certain AVR models have
a nominal clock frequency of 32 MHz (e.g. XMEGA), hence
this cycle count corresponds to an execution time of merely
2.5 seconds. Our high-speed RSA implementation advances
the state-of-the-art in two main aspects. First, we developed a
new variant of Gura et al’s hybrid method with an improved
inner loop operation that saves up to 7.8% in execution time
compared to the original one from [7]. Our loop is similar to
that of Lederer et al [15], but loads 4 bytes of each operand
per iteration (instead of just 2), which is possible thanks to a
revised register allocation strategy. Second, we employed the
Separated Operand Scanning (SOS) method [12] for modulo
multiplication since we found that it can be better combined
with our hybrid technique than both the FIPS method and the
KCM method.

We also protected our RSA software against side-channel
attacks [17], in particular Simple Power Analysis (SPA) and
Differential Power Analysis (DPA). Both belong to the genre
of implementation attacks and use information leaking from
a device while it executes a cryptographic algorithm to reveal
the secret key. SPA refers to a scenario where an attacker has
to collect only one, or very few, power traces and attempts to
recover the key by focusing on differences between patterns
within a trace. In contrast, DPA uses several or many traces
and analyzes differences between the traces. There exists an
abundant literature on countermeasures against these attacks
[17]. For example, an RSA implementation can be protected
against SPA attacks by eliminating “irregularities” in the ex-
ponentiation algorithm. In the case of the m-ary method, this
is typically achieved by converting the m-ary expansion of the
exponent into an alternative representation that is based on a

digit set not containing zero. Numerous exponent conversion
techniques facilitating a regular implementation of the m-ary
method are described in [8]. However, we decided to not use
such a conversion and implemented a simple countermeasure
that, to our knowledge, has not appeared before in the open
literature. Our idea is to represent the multiplicative identity
of ZN (where N is the modulus) by the Montgomery image
of 1, which is simply the residue R mod N = 2n mod N. The
quantity R is called Montgomery radix and usually selected as
a power of 2 that is larger than N, e.g. R = 2n for a modulus
of bitlength n [6], [11]. In this case, the Montgomery image
of 1 (i.e. 2n mod N) can be calculated by subtracting N from
2n. A multiplication by the Montgomery image of 1 carried
out during the execution of the m-ary exponentiation method
does not leak any SPA-relevant information, as will be shown
in Section III-C.

II. PRELIMINARIES

RSA operations are modular exponentiations of very large
integers with a typical size of between 512 to 2048 bits. The
large integers are, in general, represented by arrays of single-
precision words (i.e. arrays of bytes in our case since we are
implementing RSA for an 8-bit microcontroller). We denote
long integers by uppercase letters and use the corresponding
lowercase letters for the individual bytes. A concrete example
is A = (as−1, . . . ,a1,a0) with 0≤ ai < 28, whereby s refers to
the number of bytes. The following subsections summarize a
number of basic algorithms for long-integer arithmetic.

A. Basic Multiplication Techniques

The simplest algorithm for multiplying large integers is the
so-called schoolbook method, which is often also referred to
as operand-scanning method [6], [10], [11]. In essence, this
algorithm has a “nested-loop” structure with an inner loop in
which operations of the form (u,v)← a ·b+ c+d are carried
out, i.e. two bytes are multiplied and another two bytes are
added to the 16-bit product. The final result of this operation
is at most 16 bits long when a, b, c, d are bytes. Hence, the
result can be stored in (u,v), a pair of 8-bit registers [6]. The
schoolbook algorithm iterates the inner loop exactly s2 times
when each of the two operands consists of s bytes. This means
that, in total, s2 mul instructions have to be executed for the
multiplication of two s-byte operands. Each iteration of the
inner loop also performs two ld (load), four add (resp. adc)
and one st (store) instruction (see [6] for a detailed analysis
of the total instruction counts). A characteristic feature of the
schoolbook is that, in the inner loop, a byte of operand B is
multiplied by all the bytes of operand A, i.e. the 2-byte partial
products are processed in a row-wise fashion.

A different (but typically more efficient) algorithm for the
multiplication of long integers was introduced by Comba in
[4]. Comba’s method (also called product-scanning method)
processes the 2-byte partial products in a column-wise fashion
instead of row-by-row as the schoolbook method. It features
a nested loop structure (as the schoolbook method), but has
two outer loops and two inner loops. Nonetheless, the total



number of iterations of the inner loop is the same as for the
schoolbook method, namely s2 for two s-byte operands. The
operation executed in the two inner loops is a multiply-accu-
mulate operation of the form (t,u,v)← (t,u,v)+a ·b, i.e. two
bytes of the operands are multiplied and the 16-bit product is
added to a running sum held in (t,u,v), a set of three registers
[6]. Note that, when performing a number of iterations of the
inner loop, several partial products are added to a so-called
column sum, which means that this sum will get longer than
two bytes, i.e. three registers are needed to store it. Comba’s
method executes one mul, two ld, and three add (resp. adc)
instructions per iteration of the loop [6]. However, Comba’s
method does not require st instructions in the inner loop as
the bytes of the final product are written back to memory in
the outer loop.

Karatsuba [9] introduced a multiplication algorithm that is
asymptotically faster than both the schoolbook and Comba’s
method. The basic idea of Karatsuba’s multiplication method
is to split a multiplication of two s-byte operands into to three
multiplications of size s/2, which is possible at the expense
of some overhead, e.g. an increased number of additions. The
three half-size multiplications can be accomplished using the
schoolbook method (operand scanning) or Comba’s method
(product scanning). In summary, Karatsuba’s method executes
only 3s2/4 mul instructions to multiply two s-byte operands
[6]. However, as mentioned before, this approach incurs some
overhead; therefore, it is only attractive for the multiplication
of relatively large operands.

B. Hybrid Multiplication

Hybrid multiplication was first introduced by Gura et al in
[7]. The hybrid technique is, strictly speaking, not a new mul-
tiplication algorithm, but rather a sophisticated optimization
of the product-scanning approach. It combines the advantages
of the schoolbook method (operand scanning) and Comba’s
method (product scanning), and aims at reducing the overall
number of memory accesses (especially ld instructions) at the
expense of increased register usage. Consequently, the hybrid
multiplication technique is only beneficial on general-purpose
processors featuring a large number of registers, which is the
case for the ATmega128.

A standard implementation of the product-scanning method
results in an inner loop in which one byte of operand A and
one byte of operand B are loaded from memory, multiplied
together, and added to a column sum held in three registers
[6]. The main idea of the hybrid multiplication method is to
process d > 1 bytes of the two operands A and B in a single
iteration of the loop, which reduces the number of iterations
by a factor of d. Furthermore, the hybrid method reduces the
number of ld instructions since the d bytes of the operands
are used several times (i.e. for several mul instructions) in the
inner loop, but loaded only once. Gura et al employ Comba’s
method as the “outer algorithm” and the schoolbook method
as “inner algorithm.” More precisely, they compute a Comba
multiplication that consists of partial products obtained by the
schoolbook method (see [7] for further details).

C. Montgomery Modular Multiplication

Montgomery introduced in [19] a very efficient algorithm
for a modular reduction of the form Z = P ·2−n mod N. This
so-called Montgomery reduction is usually combined with a
multiplication of two operands, i.e. P = A ·B, into an operation
of the form Z = A ·B · 2−n mod N, commonly referred to as
Montgomery multiplication [11], [12]. It is possible to perform
a Montgomery multiplication in an interleaved or a separated
fashion using either operand scanning or product scanning. In
this subsection, we overview three well-known approaches to
execute a Montgomery multiplication: the Separated Operand
Scanning (SOS) method, the Finely Integrated Product Scan-
ning (FIPS) method, and the Karatsuba-Comba-Montgomery
(KCM) method. The former two methods are described and
analyzed in [12], whereas further details on the KCM method
can be found in [6]

As its name suggests, the SOS method completely separates
multiplication and modular reduction steps, i.e. the reduction
is done after the product A ·B has been entirely computed. In
the original description of the SOS method in [12], Koç et al
performed both the multiplication and Montgomery reduction
according to the schoolbook method. However, one can also
use the product-scanning technique for both operations. When
realized on basis of the schoolbook method, the inner loops
of both the multiplication and Montgomery reduction execute
an operation of the form (u,v)← a ·b+ c+d as explained in
Subsection II-A and [6]. Assuming s-byte operands, the SOS
technique executes s2 mul instructions for the multiplication
and s2 + s mul instructions for the reduction, which amounts
to 2s2 + s mul instructions altogether.

The FIPS technique performs multiplication and reduction
steps in an interleaved fashion in the same inner loop. From
an algorithmic point of view, the FIPS method has a nested
loop structure with two inner loops, very similar to Comba’s
method. In each iteration of the inner loop, two multiply-ac-
cumulate operations of the form (t,u,v)← (t,u,v)+ a · b are
carried out; one contributes to the computation of A ·B, and
the second to the Montgomery reduction. The operation in the
inner loop of the FIPS technique is identical to one of the
Comba method as described in Subsection II-B. In total, the
CIOS method executes exactly 2s2 + s mul instructions when
the operands consist of s bytes. Even though FIPS and SOS
execute exactly the same number of mul instructions, the total
number of add (resp. adc) and st instructions differs.

Contrary to FIPS, the KCM method completely separates
the multiplication of A by B and the reduction of the obtained
product modulo N [6]. The KCM method uses a combination
of Karatsuba and Comba multiplication for the former, while
the latter is realized with a product-scanning technique as in
Algorithm 1. Since the multiplication is based on Karatsuba’s
algorithm, the KCM method is asymptotically faster than the
SOS and FIPS method. The total number of mul instructions
executed by the KCM technique is only 7

4 s2 + s for operands
consisting of s bytes. However, the saving in mul instructions
comes at the cost of an increased number of add (resp. adc)



Algorithm 1. Montgomery reduction (product scanning form)

Input: An s-byte modulus N = (ns−1, . . . ,n1,n0), a product P in the
range of [0,2N−2], pre-computed constant n′0 =−n−1

0 mod 28.
Output: Montgomery residue Z = P ·2−n mod N.

1: (t,u,v)← 0
2: for i from 0 by 1 to s−1 do
3: for j from 0 by 1 to i−1 do
4: (t,u,v)← (t,u,v)+ z j ·ni− j
5: end for
6: (t,u,v)← (t,u,v)+ pi
7: zi← v ·n′0 mod 28

8: (t,u,v)← (t,u,v)+ zi ·n0
9: v← u, u← t, t← 0

10: end for
11: for i from s by 1 to 2s−2 do
12: for j from i− s+1 by 1 to s−1 do
13: (t,u,v)← (t,u,v)+ z j ·ni− j
14: end for
15: (t,u,v)← (t,u,v)+ pi
16: zi−s← v
17: v← u, u← t, t← 0
18: end for
19: (t,u,v)← (t,u,v)+ p2s−1
20: zs−1← v, zs← u
21: if Z ≥ N then Z← Z−N end if

instructions. On the other hand, the KCM technique performs
only 10s st instructions as both the Karatsuba-Comba method
and Algorithm 1 implement a product-scanning approach (see
[6] for further details).

D. Modular Exponentiation

The m-ary method, as described in [10] and [11], is based
on m-ary expansion of the exponent E. We mainly focus on
our SPA-resistant variant of the m-ary method, which will be
evaluated and analyzed in Section III-C. Our variant divides
the n-bit exponent E into s = dn/4e digits ei, each consisting
of four bits (as shown in Algorithm 2). The rationale behind
this choice of m = 24 = 16 is to balance memory requirements
and performance (i.e. number of modular multiplications).

Algorithm 2 works in the following way: we first generate
a look-up table containing 24 = 16 entries through squarings
and multiplications (we can see this look-up table as a data-
base for speeding up the modular exponentiation). Then, we
start processing at es−1, the most-significant 4-bit digit of the
exponent E, and assign the corresponding table entry as the
initial value of C, which also serves as input for our main
loop. The main loop starts with es−2, the second digit of the
exponent E, and works downwards. For each 4-bit digit, we
do four Montgomery squarings, then look up the table to find
the value of T[ei] (where ei is the i-th digit of E) and finally
do the Montgomery multiplication.

The difference between Algorithm 2 and a straightforward
implementation of the m-ary technique (such as presented in
[10] or [11]) is that we do not treat zero digits in a special
way. As outlined in Section I, we represent the multiplicative
identity of ZN through the Montgomery image of 1 (which is
2n−N in our case) and perform the main loop without any
conditional statements. Zero digits of E are processed in the

Algorithm 2. SPA-resistant m-ary method (m = 16)

Input: An n-bit modulus N, a message M in the range of [0,N−1],
an exponent E represented by s = dn/4e digits ei with 0≤ ei < 16
for i = 0 . . .s−1, i.e. E = (es−1, . . . ,s1,s0).

Output: C = ME mod N.
1: {Generate the look-up table T[0..15]}
2: T[0] = 2n−N {Montgomery image of 1}
3: T[1] = M
4: Calculate T[2] = M2, T[4] = M4, and T[8] = M8 via squaring
5: Calculate the remaining table entries via multiplication
6: C = T[es−1]
7: for i from s−2 by 1 down to 0 do
8: C = C16 mod N {Four modular squarings}
9: C = C ·T[ei] mod N {One modular multiplication}

10: end for

same way as other (i.e. non-zero) digits and, therefore, no
SPA-relevant information is leaking from the loop, provided
that the Montgomery multiplication and squaring operations
are also implemented in an SPA-resistant way. However, the
drawback of our SPA countermeasure is that it works only in
combination with Montgomery arithmetic.

Our variant of the m-ary method with m = 24 = 16 always
performs exactly n/4 multiplications and n squarings for an
n-bit exponent E, independent of its Hamming weight. The
memory footprint of our m-ary method is bearable (e.g. when
taking 1024-bit RSA as example, the look-up table occupies
2048 bytes in RAM, or 1024 bytes when using the CRT).

III. OUR RSA IMPLEMENTATION

As mentioned in Section I, our RSA implementation profits
from a new variant of the hybrid method and the combination
of this new hybrid method with the SOS technique for Mont-
gomery multiplication. The resulting Hybrid-SOS (or HSOS
for short) technique was prototyped on an ATmega128 [2], a
low-power 8-bit microcontroller based on the AVR instruction
set architecture [1]. The ATmega128 has 128 kB of in-system
re-programmable flash, 4 kB internal SRAM, and features a
total of 32 general-purpose registers.

A. Improved Hybrid Method

The execution time of the Comba method (as well as the
performance of all modular multiplication techniques based on
it, e.g. FIPS and KCM) can be significantly improved when
balancing between register usage and the number of memory
accesses. Gura’s hybrid multiplication technique [7] aims to
combine the individual advantages of operand scanning and
product scanning; it uses Comba’s method as the outer algo-
rithm and the schoolbook method as the inner algorithm. In
other words, the hybrid method obtains the product according
to Comba’s technique, whereby the d2 partial products in the
inner loop are generated and summed up in the same way as
in the schoolbook method. The saving in memory accesses is
due to the fact that d > 1 bytes of the operands are processed
in each iteration of the inner loop, but loaded from memory
only once. In order to make full use of the large register file
of the ATmega128, one typically chooses d = 4, which means



that four bytes of operand A and four bytes of operand B are
processed in each iteration of the inner loop as described in
[7]. Consequently, four bytes of each A and B are loaded from
memory into eight registers, multiplied in a row-wise fashion
(following the schoolbook method), and added to a column
sum held in nine general-purpose registers as depicted on the
left of Figure 1. This operation requires eight load (ld) and
16 mul instructions; furthermore, some 48 add/adc as well as
16 mov instructions (or, alternatively, 64 add/adc instructions)
are executed when d = 4 (see [7] for further details).

a0 · b0

a0 · b1

a0 · b2

a0 · b3

a1 · b0

a1 · b1

a1 · b2

a1 · b3

a2 · b0

a2 · b1

a2 · b2

a2 · b3

a3 · b0

a3 · b1

a3 · b2

a3 · b3

r0r1r2

Original hybrid method (d = 4)

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

r0r1r2r3r4

Our new hybrid method (d = 4)

accumulator registers accumulator registers

r3r4r5r6r7r8 r5r6r7r8

Fig. 1. Comparison of the inner loop operation of the original hybrid method
(left) and our improved variant (right) for d = 4.

Our new variant of the hybrid method aims at reducing the
overall number of mov (or movw) instructions executed in the
inner loop compared to Gura’s original method. To achieve
this, we schedule the mul instructions in a non-conventional
order in our inner loop such that their addition to the column
sum (including carry propagation) can be performed in “one
pass” for several partial products. The right part of Figure 1
depicts an example for d = 4 that illustrates the difference to
Gura’s method. This approach for implementing the hybrid
method is originally due to Lederer et al [15], but we found
a better register allocation strategy that allows us to process
four bytes of each operand at a time, whereas Lederer et al
could only process two bytes. Figure 1 shows as example the
multiplication of the 4-byte word A = (a3,a2,a1,a0) by the 4-
byte word B = (b3,b2,b1,b0). We first multiply a0 by b0 and
a2 by b0, and then move the obtained 2-byte partial products
to four temporary registers with help of the movw instruction
[1]. After multiplying a1 by b0, we add the partial product to
the content of the four temporary registers, which takes one
add and two adc instructions. Note that the second adc can
not produce a “carry-out,” as is explained in [23]. Next, we
multiply a3 by b1 and then add the four temporary registers
along with the partial product a3 ·b1 to the content of the nine
accumulator registers, which can be done in “one pass.” In

total, the addition of a0 · b0, a2 · b0, a1 · b0, and a3 · b1 to the
column sum requires only 12 add (resp. adc) as well as two
movw instructions. The next group of four partial products in
Figure 1 (i.e. a0 ·b1, a3 ·b0, a1 ·b1, and a3 ·b2) is processed in
the same way; this also takes two movw instructions but only
11 add (resp. adc). Thereafter, the third group of four partial
products, namely a0 ·b2, a2 ·b2, a2 ·b1, and a3 ·b3, is added to
the column sum using 10 add/adc instructions in total. The
last group of four partial products is summed up in a slightly
different way. First, the partial products a1 ·b2 and a2 ·b3 are
moved to the four temporary registers. The next two partial
products (i.e. a1 · b3, a0 · b3) are added to the content of the
four temporary registers, which requires seven add (or adc)
instructions, but can not produce a “carry-out” [23]. Now the
temporary registers are added to the column sum held in nine
registers. In summary, 46 add/adc instructions are executed
for a 4-byte by 4-byte multiplication and the addition of the
product to nine registers. Moreover, our hybrid method has to
execute eight movw instructions.

Our variant of the hybrid technique requires four registers
for temporary storage of two 2-byte partial products. On the
other hand, the specific order in which we multiply the bytes
of the operands means that we do not necessarily need to have
all four bytes of B in registers at the same time, i.e. we can
load them in 2-byte portions, using only two registers. More
precisely, at the beginning of each loop iteration, we load all
four bytes of operand A, but only the bytes b0, b1 of B. Then
we perform the first six byte multiplications as shown on the
right side of Figure 1; these multiplications only need b0 and
b1, but not b2 and b3. After the the sixth multiplication (in
which a3 · b0 is produced), the byte b2 is loaded and placed
in the register holding b0 (we can simply overwrite b0 as it is
not needed anymore). We proceed with the next five multipli-
cations; after computing the product a2 · b1, we load b3 and
overwrite b1 (this is possible since b1 is not needed anymore
at this time). In summary, our variant of the hybrid method
requires six registers for the bytes of the operands, as well as
four registers for temporary storage of partial products. Note
that temporary storage of partial products (and also execution
of movw instructions) is not necessary on processors equipped
with a multiplier that does not modify the carry flag.

TABLE I
COMPARISON OF INSTRUCTION COUNTS ON THE ATMEGA128

Instruction type add mul ld st mov Other Total
CPI 1 2 2 2 1 cycles cycles

Classic Comba 1200 400 800 40 81 44 3805
Gura [7] 1360 400 167 40 355 197 3106
Uhsadel [23] 986 400 238 40 355 184 2881
Scott [22] 1263 400 200 40 70 38 2651

Our work 1194 400 200 40 212 179 2865

Table I summarizes instruction counts and total execution
time (in clock cycles) of our improved hybrid method for a
(160×160)-bit multiplication on an ATmega128 processor. We
use (160×160)-bit multiplication as a benchmark in order to
allow for direct comparison with previous work that targeted



elliptic curve cryptography [3] instead of RSA. Note that the
instruction counts in the columns labeled with add, ld, and
mov also include adc, ldd, and movw, respectively (i.e. we do
not distinguish between add and adc as they both require one
cycle on AVR processors). Our variant of the hybrid method
executes a (160×160)-bit multiplication in 2865 clock cycles
on the ATmega128, which is approximately 7.8% faster than
the original hybrid method of Gura et al [7]. This saving in
execution time is mainly due to the fact that we perform only
212 mov (resp. movw) instructions, whereas Gura et al require
some 355 mov or movw instructions. Furthermore, our special
scheduling of the multiplications in the inner loop reduces the
number of add (resp. adc) instructions, as was noticed before
in [15]. The hybrid variant of Uhsadel et al [23] takes 2881
cycles, even though their implementation (as well as the one
of Gura [7]) is based on d = 5 for 160-bit operands (instead
of d = 4 as in our work), i.e. five bytes of each operand are
processed per loop iteration. However, our hybrid method is
a little slower than Scott et al’s implementation [22], mainly
because they fully unrolled the loops, which allowed them to
yield further savings at the expense of larger code size. Full
loop unrolling may be a viable optimization in elliptic curve
cryptography, but not for RSA.

B. Hybrid Montgomery Multiplication

We integrated our new hybrid technique as inner loop into
different Montgomery multiplication and squaring algorithms
such as SOS, FIPS, and KCM (all of which are described in
Subsection II-C). Furthermore, we developed a small Assem-
bly library containing basic long-integer arithmetic operations
(addition, subtraction, comparison, and so on). The addition
and subtraction of two operands A, B are implemented via a
simple loop that iterates through the individual bytes of these
operands. However, in all these basic operations, we process
four bytes of the operands “at once” (i.e. per iteration of the
loop), starting with the least significant 4-byte block. Also the
different Montgomery multiplication and squaring algorithms
are implemented in Assembly language and highly optimized
for speed. On the other hand, the modular exponentiation is
written in ANSI C and calls the low-level Assembly functions
for modular multiplication and squaring. In the following, we
describe in detail our implementation of three hybrid variants
for Montgomery multiplication: hybrid SOS (HSOS), hybrid
FIPS (HFIPS), and hybrid KCM (HKCM).

Hybrid SOS (HSOS): As mentioned in Subsection II-C, the
SOS method separates multiplication and modular reduction
steps, i.e. the reduction is done after the full product A ·B has
been computed. The original description of the SOS method
in [12] uses the schoolbook approach (i.e. operand scanning)
for both the multiplication and Montgomery reduction. How-
ever, in order to take advantage of the hybrid technique, we
perform the multiplication according to Comba’s method in
combination with our improved inner loop as described in the
previous subsection, whereas the reduction is implemented on
basis of Algorithm 1, but using our improved inner loop. The

Comba multiplication (as well as the Montgomery reduction)
process four bytes of each operand per loop iteration.

Hybrid FIPS (HFIPS): As indicated by its name, the HFIPS
method combines our improved hybrid technique with FIPS
Montgomery multiplication. A specific property of FIPS and
HFIPS is that they perform multiplication and reduction steps
in an interleaved fashion in the same inner loop. HFIPS uses
our improved hybrid technique as “inner algorithm” and the
product scanning method as “outer algorithm.” Each iteration
of the inner loop performs two multiplications of 4-byte by 4-
byte words and adds the two resulting 8-byte products to the
column sum, which is held in nine registers. Of course, this
processing of four bytes of the operands per iteration (instead
of just a single byte as in standard FIPS) reduces the overall
number of loop iterations by a factor of four.

Hybrid KCM (HKCM): HKHM is our variant of the KCM
multiplication; it is based on the improved hybrid method as
inner loop. Like KCM, also HKHM completely separates the
multiplication and reduction operation; the former is realized
using Karatsuba-Comba multiplication and the latter via the
product-scanning technique of Algorithm 1. We implemented
the HKCM multiplication as a C function with calls to the
low-level Assembly routines for performing multiple-precision
arithmetic. Firstly, we divide the multiplication of two s-byte
operands into three ( s

2 )-byte multiplications using Karatsuba’s
method, and then perform these “half-length” multiplications
using Comba’s method combined with our optimized hybrid
technique. Then, the Montgomery reduction is carried out as
specified in Algorithm 1, but again with using our improved
hybrid method in the inner loop(s).

Optimizations for Squaring: The square A2 of a multiple-
precision integer A can be computed significantly faster than
the product A ·B of two distinct integers. Due to a symmetry
in the squaring operation, many partial products appear twice
since ai ·a j = a j ·ai. All partial products ai ·a j for i 6= j need
to be computed only once and can be simply left-shifted to
be doubled. Compared to standard Comba multiplication, the
optimized Comba squaring saves some 20% execution time
for 256-bit operands. Optimizations for Montgomery squaring
can be easily integrated into both HSOS and HKCM, but are
rather complicated for HFIPS.

TABLE II
EXECUTION TIME OF HSOS, HFIPS, AND HKCM (IN CLOCK CYCLES).

Algorithm 256 bit 512 bit 768 bit 1024 bit

HSOS (d = 4) 18655 65649 141585 246462
HFIPS (d = 4) 19727 70592 153007 266975
HKCM (d = 4) 20994 66142 135901 232450

Analysis and Comparison: In order to analyze and compare
these three hybrid Montgomery multiplication techniques, we
simulated their execution time using operands ranging from
256 to 1024 bits; the results (in clock cycles, not including a
potentially necessary final subtraction) are summarized in Ta-
ble II. The HSOS method outperforms HFIPS at all operand



lengths, which seems quite surprising at a first glance given
that HFIPS merges multiplication and reduction into a single
inner loop and, thus, executes the loop overhead (i.e. update
of a loop counter, branch instruction) only once. However, a
disadvantage of HFIPS is the need to maintain three pointers
to operands (A, B, N) as well as a pointer to the result in the
inner loop, which is not possible in our implementation since
we do not have sufficient free registers to hold four pointers
(each of which occupies two registers). Therefore, we need to
push and pop one of these four pointers to/from the stack in
each iteration of the loop, which costs four clock cycles. On
the other hand, the overhead in the execution of an iteration
of the loop (i.e. increment or decrement of a loop counter and
branch instruction) amounts to three cycles. Consequently, a
separation of multiplication and reduction steps (as in HSOS)
is more efficient than the “fusion” of these operations into a
single inner loop (like in HFIPS), mainly due to the massive
register usage of the hybrid method.

The HKCM method is faster than HSOS (and also HFIPS)
for operands exceeding 512 bits in length, but slower in the
case of 256-bit operands. Since HKCM is based on Karatsuba
multiplication, it is asymptotically faster than both HSOS and
HFIPS, but involves also a certain overhead (e.g. additions to
combine the half-size products), which explains its moderate
performance for 256-bit operands. For 512-bit operands, the
HKCM method achieves essentially the same performance as
HSOS, and both are roughly 7% faster than HFIPS.

C. Performance Evaluation of 1024-bit RSA

We also implemented an entire RSA private-key operation
(i.e. decryption, signature generation) using the CRT and the
m-ary exponentiation method. As mentioned in Section I, the
CRT allows one to speed up RSA private-key operations by a
factor of almost four. The basic idea is to split up a full-size
exponentiation of the form M = CD mod N into two half-size
exponentiations, whereby one is performed modulo P and the
other modulo Q [20]. Of course, this is only possible when
the prime factors P and Q of N are known. The CRT requires
some pre-processing (to split the ciphertext C and decryption
exponent D into two half-size parts) and post-processing (to
combine the results of the two half-size exponentiations into
M). Both the pre- and postprocessing involve a few operands
that depend only on P and Q, i.e. they are constant as long as
the key does not change. We pre-computed these constants
to allow for an efficient execution of CRT-based decryption
(resp. signature generation).

Our implementation performs the half-size exponentiations
using the m-ary exponentiation method with m = 24 as shown
in Algorithm 2. This version of the m-ary method processes a
4-bit digit of the exponent at a time, which means it performs
n squarings and n/4 multiplications to obtain the result of an
n-bit modular exponentiation. In contrast, the simple square-
and-multiply technique requires about n/2 multiplications on
average, but n multiplications in the worst case. Therefore, the
m-ary method with m = 24 can save some 15% in execution
time on average when taking into account that a squaring is

slightly faster than a multiplication. However, in a worst case
situation (i.e. the exponent has a Hamming weight of 1), the
m-ary method is significantly faster. The m-ary exponentiation
with m = 24 requires pre-computation and storage of a table
containing 16 powers of the base, which occupies 1024 bytes
in RAM for 512-bit operands.

TABLE III
PERFORMANCE OF 1024-BIT RSA IMPLEMENTATIONS

Implementation Cycle count Notes

Deng et al [5] 60.0 ·106 C, public-key operation
Watro et al [28] 58.0 ·106 C, public-key operation
Gura et al [7] 87.92 ·106 C and assembly, CRT
Wander et al [26] 88.0 ·106 C and assembly, CRT
Wang et al [27] 172.0 ·106 C and assembly, CRT

Our work 75.68 ·106 C and assembly, CRT

The execution time of a 1024-bit RSA private-key operation
is roughly 75.68 · 106 clock cycles on the ATmega128 when
exploiting the CRT and using the m-ary method for the two
512-bit exponentiations. We implemented the m-ary technique
on basis of the HSOS method for Montgomery multiplication
and squaring since it is slightly faster than the HKCM method
and can also be easier protected against SPA attacks. A cycle
count of 75.68 ·106 corresponds to an execution time of less
than five seconds when the ATmega128 is clocked with the
maximum frequency of 16 MHz. Table III compares our exe-
cution time with that of previously-published implementations
of 1024-bit RSA operations on the ATmega128. Both Watro
et al [28] and Deng et al [5] specify only the execution time
of a 1024-bit RSA public-key operation in their papers. The
results presented in Table III show that our work outperforms
previous implementations on the ATmega128 and establishes
a new speed record for 1024-bit RSA on 8-bit processors. We
attribute the performance gain to our improved variant of the
hybrid method and the new HSOS technique for Montgomery
multiplication and squaring.

IV. LOW-COST SIDE-CHANNEL COUNTERMEASURES

In the following, we first demonstrate that countermeasures
against Simple Power Analysis (SPA) [14] are necessary in an
RSA implementation. Then, we show that an implementation
with SPA countermeasures may still succumb to Differential
Power Analysis (DPA), and describe further countermeasures
to protect RSA operations against DPA.

A. SPA Attack and Countermeasure

To show vulnerability of the standard square-and-multiply
algorithm, we attack our implementation of this algorithm via
SPA. The square-and-multiply method is fairly simple; it uses
the binary representation of the exponent E and computes the
result as a sequence of modular multiplications and squarings
[10]. Our implementation of the square-and-multiply method
starts at most significant non-zero bit of E and works down-
wards. Whenever the current bit ei of E is 1, a squaring and
a multiplication are performed. However, if ei = 0, only the
squaring operation is carried out. Our practical experiments



show that multiplications and squarings take different time
and exhibit different patterns in a side-channel trace as they
consume different amounts of power during execution. Figure
2 shows as example the EM and power profile of a squaring
and a multiplication. The right part of the EM (resp. power)
trace, corresponding to multiplication, is clearly distinct from
the left part, corresponding to squaring. Both the power and
EM trace exhibit more significant peaks in the multiplication
than in the squaring. These peaks make it relatively easy to
obtain the bits of the secret RSA exponent directly from the
power or EM trace.

0 1 2 3 4 5 6 7 8 9 10
−0,50

−0,25

0

0,25

0,50

0 1 2 3 4 5 6 7 8 9 10
−0,50

−0,25

0

0,25

0,50

Fig. 2. EM (top) and power (bottom) traces of an ATmega128 executing a
squaring followed by a multiplication; no averaging performed.

Moreover, as described in [25], the Montgomery reduction
is vulnerable to SPA because of the conditional subtraction
of the modulus N that is executed to keep the result bounded
within the range of [0,N−1]. Such final subtractions are also
necessary for other modular reduction algorithms in order to
obtain the least non-negative residue. In our experiments, we
were able to identify final subtractions in both the power and
EM trace, which means that an attack like the one described
in [25] is possible against our unprotected implementation.

Based on these experimental attacks, it is evident that the
vulnerabilities of the unprotected implementation are mainly
due to conditional statements, which can be easily identified
in power as well as EM traces. These conditional statements
(e.g. if-then constructs) are present in the square-and-multiply
algorithm and Montgomery reduction [25]. Countermeasures
against SPA attack are, in general, fairly simple; we give in
the following two examples of low-cost countermeasures to
increase the SPA-resistance of an RSA implementation.

1) One needs to avoid using conditional statements in the
exponentiation algorithm. Both the suqare-and-multiply
algorithm and the standard version of the m-ary method
(as described in [10] or [11]), perform a multiplication
only if the corresponding bit or digit of the exponent is
non-zero, which leaks SPA-relevant information. On the
other hand, our variant of the m-ary method (shown in
Algorithm 2) executes always four squarings followed

by a multiplication, regardless of whether a digit of the
exponent is zero or not. Therefore, Algorithm 2 allows
for efficient protection against SPA attacks1.

2) In order to protect the Montgomery multiplication and
squaring against SPA, all conditional subtractions of the
modulus N have to be replaced by unconditional sub-
tractions of a subtrahend that is either N or a byte-array
containing zeros. To get unconditional source code, we
extended the byte-array holding the modulus N with a
second array holding only zeroes. Then, all conditional
branches can be replaced by index calculations into this
special byte array to subtract either the actual modulus
N, or only zero. Of course, also this index calculation
has to done in an SPA-resistant way.

After integration of these simple countermeasures, we were
not able anymore to mount a successful SPA attack.

B. DPA Attack and Countermeasure

Differential Power Analysis (DPA) is a kind of side-channel
attack that utilizes statistical analysis to extract information
related to secret keys. To show the practicability of DPA, we
mounted a Multiple Exponent Single Data (MESD) attack [18]
against our m-ary exponentiation with SPA countermeasures
as sketched in the previous subsection. The MESD attack is a
DPA-style attack applicable to modular exponentiation. This
attack requires the processor executing the implementation to
exponentiate the same message M with n different exponents
E, i.e. E0,E1, . . . ,En. Even though RSA is usually performed
with a fixed secret exponent, the MESD attack is nonetheless
relevant in a situation where the attacker possesses a device
with the same power consumption characteristics as the device
under attack. In this case, he can use the identical device to
capture power traces for different exponents. The basic idea
of the MESD attack is as follows: the attacker exponentiates
a constant message with the unknown secret key and several
guesses for a part of the key, which is in our case simply a
4-bit digit of E. After each guess of an exponent-digit, the
power or EM traces for the secret exponent and the guessed
exponent are subtracted from one another to get the DPA bias
trace [18]. By inspecting the DPA bias trace, the attacker can
identify the correct guesses of the exponent digit by digit.

In our attack experiment, we used 256-bit RSA executed on
an ATmega128 controller with a frequency of 7.37 MHz as
an example. We mounted the attack against the m-ary method
with SPA countermeasures (Algorithm 2). Each digit of the
exponent consists of 4 bits in our case. After the 16 powers
of M have been computed and stored in a look-up table, the
exponentiation in fact starts at es−2, the second-most signifi-
cant 4-bit digit of E, and works downward. We try to guess
the exponent digit by digit. Assume we have already got the
first (i−1) digits of E, i.e. the DPA trace will exhibit a zero
bias in the leading (i−1) digit positions. Figure 3 shows the
differential traces for the correct guess and for one (due to
space limits) of the incorrect guesses for a 4-bit digit of the

1Note that we do not consider safe-error fault attacks in this paper.



exponent, obtained from 100 power traces each. One can see
that the correct guess is perfectly distinguishable by a leading
zero part.
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Fig. 3. MESD attack: differential traces for the correct guess (top) and one
incorrect guess (bottom) for a 4-bit exponent digit.

From this experiment, we can see that our MESD attack is
successful: we can recover the exponent digit by digit if the
exponentiation is implemented according to the m-ary method
(the attack worked for both the unprotected version and the
version with SPA countermeasures). However, our RSA im-
plementation can also resist DPA attacks after the integration
of DPA countermeasures such as blinding [17]. We apply the
message blinding method, which was originally introduced in
[13]. First, we choose a random v f co-prime to the modulus
N and then obtain vi = (v f

−1)E mod N, where E denotes the
public exponent. Before performing the exponentiation, the
input message is multiplied by vi mod N, and afterwards the
result is corrected by multiplying it by v f mod N. Inversion
is, in general, a costly operation; therefore, it makes sense to
pre-compute a (v f ,vi) pair and square both v f and vi before
each new exponentiation, as suggested in [13]. If (vi,v f ) is
kept secret, the attacker has no useful information about the
input to the modular exponentiation.

In our case, just blinding the message is not enough since
in RSA the same exponent is used several times, and hence
exponent blinding (also introduced in [13]) is necessary. The
basic idea is to “randomize” the exponent E by addition of a
random multiple of φ(N) = (p−1)(q−1) before performing
an exponentiation so that the bits ei of E are different every
time. A typical size of the random number by which φ(N) is
multiplied is 32 bits. Putting it all together, an exponentiation
with both message and exponent blinding is performed in the
following way:

1) Blind the message M using vi: M′ = vi ·M mod N.
2) Blind the exponent E using a random number r (for a

1024-bit RSA, r is typically 32 bits): E ′ = E + r ·φN.
3) Do exponentiation after blinding: C′ = M′E

′
mod N.

4) After receiving C′, un-blind it to get the original value
of C: C = v f ·C′ mod N.

In summary, the SPA and DPA countermeasures increase the
execution time of the exponentiation by about 12% compared
to an unprotected implementation.

V. CONCLUSIONS

The current Internet is, to a large extent, secured by RSA-
based PKI, CAs, and security protocols. Expanding the scope
of these well-established security protocols and services to the
“Internet of Things” requires efficient RSA implementations
for resource-constrained devices such as sensor nodes. In this
paper we introduced a highly-optimized RSA implementation
for 8-bit AVR microcontrollers that is able to perform a full
1024-bit private-key operation in less than 76 · 106 cycles on
the ATmega128. We achieved this performance, which sets a
new speed record for 1024-bit RSA on 8-bit platforms, thanks
to an optimized variant of the hybrid multiplication technique
that saves approximately 7.8% in execution time compared to
the original hybrid method of Gura et al. To further improve
performance, we integrated our new hybrid method into three
different algorithms for Montgomery multiplication (namely
SOS, FIPS, and KCM) and identified the hybrid SOS (HSOS)
technique as the best option. Our implementation also makes
use of the CRT and m-ary exponentiation method to achieve
peak performance for private-key operations. In addition, we
aimed to protect our implementation against power-analysis
attacks, which is necessary in the “Internet of Things” since
an attacker may have access to the communication endpoints
so that he can monitor side-channel leakage. The countermea-
sures we integrated into our RSA implementation increase the
execution time by roughly 12%, yet our protected private-key
operation is faster than most unprotected implementations in
the literature. In summary, our RSA implementation satisfies
all requirements to expand the security protocols and services
of the current Internet to the “Internet of Things”
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